HW 3, PROBABILITY I

1. Let $\Omega = (0,1)$, \mathcal{F} be Borel sigma algebra on Ω , and the probability be the standard Lebesgue measure. Show that the random variables $X_n(\omega) = \sin(2\pi n\omega)$, n = 1, 2, ... are not independent, but that for all $m, n \in \mathbb{N}$,

$$\mathbb{E}(X_nX_m) = \mathbb{E}X_n\mathbb{E}X_m.$$

2. Let $X_1, ..., X_n$ be i.i.d. standard normal random variables. Show that

$$\frac{X_1 + \ldots + X_n}{\sqrt{n}}$$

is a standard normal random variable.

3. Let X_1, X_2, X_3, X_4, X_5 be independent random variables, uniformly distributed on [0, 1]. Find the distribution of $X_1 + X_2 + X_3 + X_4 + X_5$.

4. Find four random variables taking values in $\{-1, 1\}$ so that any three are independent but all four are not.

5. Let $X_1, X_2, ...$ be i.i.d. with $P(X_i > x) = \frac{e}{x \log x}$ for x > e. Show that $E|X_i| = \infty$, but there is a sequence of constants $\mu_n \to \infty$ so that $\frac{X_1 + ... + X_n}{n} - \mu_n$ converges to zero in probability.

 6^* . Let $f : [0,1] \to \mathbb{R}$ be a continuously differentiable function, and $\{f_n(x)\}_{n=1}^{\infty}$ be its Bernstein's polynomials. Show that $f'_n(x)$ tends uniformly to f'(x), as $n \to \infty$.