HW 3, PROBABILITY I

1. Let $\Omega=(0,1), \mathcal{F}$ be Borel sigma algebra on Ω, and the probability be the standard Lebesgue measure. Show that the random variables $X_{n}(\omega)=\sin (2 \pi n \omega), n=1,2, \ldots$ are not independent, but that for all $m, n \in \mathbb{N}$,

$$
\mathbb{E}\left(X_{n} X_{m}\right)=\mathbb{E} X_{n} \mathbb{E} X_{m} .
$$

2. Let X_{1}, \ldots, X_{n} be i.i.d. standard normal random variables. Show that

$$
\frac{X_{1}+\ldots+X_{n}}{\sqrt{n}}
$$

is a standard normal random variable.
3. Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be independent random variables, uniformly distributed on [0, 1]. Find the distribution of $X_{1}+X_{2}+X_{3}+X_{4}+X_{5}$.
4. Find four random variables taking values in $\{-1,1\}$ so that any three are independent but all four are not.
5. Let X_{1}, X_{2}, \ldots be i.i.d. with $P\left(X_{i}>x\right)=\frac{e}{x \log x}$ for $x>e$. Show that $E\left|X_{i}\right|=\infty$, but there is a sequence of constants $\mu_{n} \rightarrow \infty$ so that $\frac{X_{1}+\ldots+X_{n}}{n}-\mu_{n}$ converges to zero in probability.

6*. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuously differentiable function, and $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ be its Bernstein's polynomials. Show that $f_{n}^{\prime}(x)$ tends uniformly to $f^{\prime}(x)$, as $n \rightarrow \infty$.

